CRIX or evaluating blockchain based currencies

Simon Trimborn
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
Currencies - Cigarettes, USD, Cryptos

- Anything can be a currency
- Anyone can offer a currency

Figure 1: Cigarette trading in postwar Germany (42)
Figure 2: Friedrich A. Hayek (42)

CRIX - a CRyptocurrency InDeX
Digital Economy

- Amazon
- Paypal
- Google Wallet
- Cryptocurrencies
- Ripple

CRIX - a CRyptocurrency IndeX
Cryptocurrencies

- Decentralized, virtual, low transaction costs

- NYSE, Andreessen Horowitz, DFJ: Coinbase funding (75 M$)
- Nasdaq: company-wide utilization of blockchain technology
- Citigroup: own coin development
- PBOC: working on digital currency
- Switzerland: first city accepts Bitcoin payments
Cryptocurrencies – Facts

- As of 20160531, CoinMarketCap.com
 - 632 cryptos
 - 2,034 exchange pairs
 - Market Cap 10.6 billion USD

- Barely derivatives

- Commodity Futures Trading Commission (USA)
 - Cryptos are commodities
Challenges

- What is the benchmark?
- How does the market evolve?
- Market index necessary to compare cryptos
What is the benchmark?

Figure 3: Wilshire 5000 Total Market Index, S&P500, S&P100, rescaled to a starting value of 1000

CRIX - a CRyptocurrency Index
CRIX - the benchmark

Figure 4: Screenshot: crix.hu-berlin.de
Outline

1. Motivation ✓
2. Market Index - CRIX
3. CRIX family comparison
4. Application to German stock market
5. Application to Mexican stock market
6. Conclusion
7. Appendix
Data

- 290 cryptos
- Time period: 20140401 - 20160406
- Prices, capitalization, volumes
- CoinGecko
CRIX – Rules I

Laspeyres’ idea:

\[
\text{CRIX}(k)_t = \frac{\sum_{j=1}^{k} MV_{jt}}{\text{Divisor}}
\]

- \(MV_{jt} \): market capitalization of crypto \(j \)
- \(k \): number of constituents

Liquidity rule:
- Eligible if higher rank than 0.25 percentile
- Measure regarding daily volume in USD and coins
CRIX - Rules II

- **Spine**
 - Index members
 - Crucial for benchmark fit

\[
CRIX(k)_t \xrightarrow{\text{min}(k)} \text{total market}_t
\]

- total market\(_t\) = \[\sum_{j=1}^{J} \frac{MV_{jt}}{\text{Divisor}}\]

- **Quadratic loss function**

- **Sparse benchmark**
CRIX - Rules III

1. Construct total market index: \(\text{total market}_t = \frac{\sum_{j=1}^{J} \text{MV}_{jt}}{\text{Divisor}} \)

2. Set \(i = 1 \)

3. Construct \(\text{CRIX}(k_i), \ i = 1, 2, 3, \ldots, \ k_1 < k_2 < k_3 < \ldots \)

4. Compute \(\varepsilon(k_i)_t = \text{total market}_t - \text{CRIX}(k_i)_t \)

5. Kernel density estimation for density \(f(\varepsilon(k_i)_t) \) with leave-one-out cross validation

6. Derive \(AIC(k_i) = -2 \log \prod_{t=1}^{n} f(\varepsilon(k_i)_t) + 2k_i \)

7. If \(i = 1 \): Jump to 3., else 8.

8. If \(AIC(k_{i-1}) < AIC(k_i) \): stop, else jump to 3. and \(i = i + 1 \)
CRIX – Rules IV

- AIC asymp. optimal - Benchmark
 - Best model out of model set
 - Minimization of K-L information loss by approximating full reality
CRIX family

- CRIX - AIC
 - $k_1 = 5$
 - Step width: 5 constituents
 - Local optimum

- ECRIX - AIC
 - $k_1 = 1$
 - Step width: 1 constituents
 - Local optimum

- EFCRIX - AIC
 - $k_1 = 1$
 - Step width: 1 constituents
 - Optimum

CRIX - a CRyptocurrency IndeX
Index members

- Compare last 3 M
- Amount used for next 3 M

<table>
<thead>
<tr>
<th>Period</th>
<th>CRIX</th>
<th>ECRIX</th>
<th>EFCRIX</th>
<th>Maximum achievable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>8</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>10</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>2</td>
<td>204</td>
<td>205</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>8</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>4</td>
<td>214</td>
<td>214</td>
</tr>
</tbody>
</table>

Table 1: Number of constituents in respective periods

CRIX - a CRyptocurrency IndeX
CRIX performance

Figure 5: CRIX CRIXindex CRIXcode

CRIX - a CRyptocurrency IndeX
Loss comparison I

Figure 6: Realized difference between total market and CRIX, ECRIX, EFCRIX

CRIX - a CRypocurrency Index
Loss comparison II

Table 2: Comparison of CRIX, ECRIX, EFCRIX against total market

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIX vs. Total Market</td>
<td>2.0687</td>
<td>0.9935</td>
</tr>
<tr>
<td>ECRIX vs. Total Market</td>
<td>9.2370</td>
<td>0.9870</td>
</tr>
<tr>
<td>EFCRIX vs. Total Market</td>
<td>0.0503</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
CRIX methodology & German stock market

- German Prime Standard
- Basis for DAX, MDAX, SDAX, TecDAX
- DAX often interpreted as market indicator
- DAXCRIX
 - CRIX methodology applied to German companies
 - Initialization with 30 members
 - Time period: 20000616 - 20151218
 - AIC computation quarterly
 - Index members exchange quarterly

CRIX - a CRypotocurrency InDeX
Index members FDAX

Comparison of DAX and FDAX index members

Figure 7: Number of constituents in respective periods for DAX and FDAX

CRIX - a CRyptocurrency InDeX
Loss comparison DAX & FDAX

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDAX vs. TMI</td>
<td>347.20</td>
<td>0.95</td>
</tr>
<tr>
<td>DAX vs. TMI</td>
<td>756.47</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table 3: Comparison of DAX with CRIX methodology (FDAX) and rescaled DAX against total market. FDAXloss, CRIXcode.
CRIX methodology & Mexican stock market

- Unique condition: Telecommunication sector dominant
- Carlos Slim Helu
- IPC35 meant as market indicator
- FIPC
 - CRIX methodology applied to Mexican stock market
 - Initialization with 35 members
 - Time period: 19960601 - 20150529
 - All Mexican companies in Datastream
 - AIC computation quarterly
 - Index members exchange quarterly

CRIX - a CRyptocurrency InDeX
Loss comparison IPC & FIPC

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPC vs. TMI</td>
<td>242.07</td>
<td>0.97</td>
</tr>
<tr>
<td>IPC vs. TMI</td>
<td>151113.43</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table 4: Comparison of IPC with CRIX methodology (FIPC) and rescaled IPC against total market
Conclusion

- CRIX represents market very well
- EFCRIX best but too many index constituents
- CRIX good choice in terms of MSE and MDA
- Methodology enhances fit to German stock market
 - But strategy may cause high transaction costs
 - Use analysis to identify lower bound of index members
- Methodology performs even better applied to Mexican stock market

CRIX - a CRyptocurrency IndeX
CRIX or evaluating blockchain based currencies

Simon Trimborn
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
Bibliography

Simon Trimborn and Wolfgang Karl Härdle (2016)
CRIX or evaluating Blockchain based currencies
SFB Discussion Paper

Simon Trimborn and Wolfgang Karl Härdle (2015)
CRIX or evaluating Blockchain based currencies
DOI: 10.4171/OWR/2015/42
Bitcoin

- Counteract inflation
 - Fixed max amount
- Anonymity
- Needs of users
 - Decision on structure

Movie: Bitcoin - Made simple
Anonymity - Black market

- Wallets are anonym
- Transactions are anonym
- Blockchain core feature
- Causes problems

Figure 8: US government warning
Source: www.wikipedia.org
The Blockchain - Spine of Bitcoin

- Transaction list
- Transaction processors called miners
- Miners collect & publish transactions
- Order is invariable

Figure 9: Spine
The Blockchain

- Sometimes parallel chains
 - Due to e.g. internet lag
- Green block: first block
 (Genesisblock)
- Black blocks: main chain
- Purple blocks: parallel chains

Figure 10: Blockchain
Source: www.wikipedia.de
The Blockchain – Lag

- Assume: 2 blocks mined simultaneously
 - Miner 1: Australia
 - Miner 2: Germany

- Effect of lag:
 - Some receive Australian block
 - Some receive German block

- Parallel chain

- For next block:
 - Check which chain contains the most difficult to find blocks
 - Becomes main chain
Process of Transactions

- Users organize process
- Some users (miners) create a transaction list
 - Next block of blockchain
- Blocks have a strict order, ensured by signature
- Miners search for signature
- Signature encrypted by cryptography

Transaction example

CRIX - a CRyptocurrency IndeX
Who accepts Bitcoin?

- Overstock - Retailer
- Dell
- University of Cumbria
- Expedia - Travel Agency
- Republican Party of Louisiana
Bitcoin - The System I

- Take 4 people
 - Alice, Bob
 - Gary, Grace
- 2 special users (miners)
 - Gary
 - Grace
- Alice buys a rare book from Bob and pays with Bitcoin
- Gary and Grace process this transaction
Bitcoin - The System II

Alice

Gary

Grace

Bob

block

CRIX - a CRypocurrency IndeX
Appendix

Bitcoin - The System III

- Gary OR Grace receives Bitcoins for service
- BOTH add transaction to list
- BOTH compute hash value (trial and error)
- Click for online hash generator
- List: one block of the blockchain
- Hash value: gives position of block in blockchain
- Contains part of hash value of last block

CRIX - a Cryptocurrency Index
Liquidity Rule I

- Rely often on turnover

\[\text{Turnover} = \frac{\text{Volume}}{\text{Floating Coins}} \]

- Floating Coins for cryptos unclear
- Rule motivated by STOXX Japan 600 and AEX Family
- Measure relative to asset universe
- Small trading volume in USD but high traded coins taken into account
Liquidity Rule II

Liquidity rule (one of these):

1. 0.25 percentile of ADTV (Average Daily Trading Volume):
 \[ADTV_i \geq ADTV_{0.25} \]

2. 0.25 percentile of ADRTC (Average Daily Relative Traded Coins):
 \[ADRTC_i \geq ADRTC_{0.25} \]

- Checked monthly
- Crypto made insensitive if trading stops
Usage of Bitcoins

Figure 11: one day, one week, one month, 1-3 month source: John Radcliff

CRIX - a CRyptocurrency IndeX
Kernel Density Estimation (KDE)

- Compute pdf with KDE

\[\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right) \]

with \(K(u) \) Epanechnikov kernel, \(h \) bandwidth

- Bandwidth selection with Wand & Jones plug-in estimator
References

- Cigarette trading in postwar Germany, Bundesarchiv, Bild 183-R79014 / CC-BY-SA
- The original uploader was DickClarkMises at English Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons